The leader in providing Commercial Air Services (CAS) for the United States Military and NATO Countries

Train Like you Fight!
ON THE ATAC!
As the sun rises over the vast northern Nevada desert, a single Kfir flies tight circles between two mountain ranges in the middle of the Naval Strike and Air Warfare Center's (NSAWC) Fallon Range Training Complex. The Kfir's goal is to evade the attacking Hornets inbound to the B-17 bombing range complex... and then spoil their day!

ATAC evolution

ATAC was born out of the draw-down of indigenous aggressor support following the fall of the Soviet Union. Before that, the US Navy fielded dedicated aggressor squadrons of A-4S and F-5S, while EA-7LS and ERA-3Bs provided adversarial electronic jamming training. Massive cutbacks in active and reserve squadrons saw organic aggressor support being confined to a handful of key training bases and mostly focused on dissimilar air combat training (DACT).

Jeffrey JD Parker, a 1988 graduate of the USAF Academy and a veteran of Operations ‘Desert Shield’ and ‘Desert Storm’, founded ATAC in 1994. Utilizing his experience of flying fast jets for the USAF, JD began work as a subcontractor for Flight International, which at the time was providing limited aerial target support to the US Navy. By 1996 ATAC had begun operating a pair of ex-Royal Danish AF Saab 35 Draken fighters. With the Drakens, JD and his associates helped fill an urgent need for a high-performance, Mach 1+ plus target capability for the US Navy.

In 2002, having logged over 800 hours in the Draken, Parker evaluated the need for a new platform with greater capabilities and a longer possible service life. He chose the Kfir, and subsequently ATAC negotiated the acquisition of retired Kfir C2s from Israel Aerospace Industries.

Around this time, the US Navy began to realize the massive demands that the ‘Global War On Terror’ was putting on its fighter inventories. In order to fulfill a multi-need training gap, the US Navy awarded the company a series of all-inclusive, fixed-price contracts to provide multiple levels of aerial target support to the fleet. The terms of these agreements would allow the US Navy to purchase bulk flying hours within a certain aircraft performance class to be used within a specified period of time as the Navy saw fit.

These contracts would spark significant growth in ATAC’s operations via multiple operating locations and large increases in its personnel and aircraft inventories. Under the terms of the new contract, ATAC would not only be providing supersonic Type 4 aggressor and electronic attack support for the fleet, but would also begin to furnish services in the high-subsonic realm: the US Navy’s Type 3 commercial air services category.

With ATAC’s increase in market share, it would now need a Reliable and efficient platform with outstanding endurance. The Hawker Hunter F88 was chosen for these qualities. Due to new missions and demand from various customers, ATAC’s fleet has grown ever larger, including the recent addition of the A-4N Skyhawk to augment the Hunter in the Type 3 high-subsonic target category.
ATAC today

The ATAC fleet has expanded to 23 aircraft, comprising six Kfir C2s, 13 Hunter F5Bs and four A-4Ns. The company has become a global enterprise that recently amassed an impressive 22,000 flight hours. Varying combinations of the ATAC fleet operate around the world, with permanent operating locations in Newport News, Virginia; Naval Base Ventura County (NBVC) Point Mugu, California; Naval Air Station Fallon, Nevada; Marine Corps Air Station Kaneohe Bay, Hawaii and Naval Air Facility Atsugi, Japan.

Although mostly known for being the US Navy’s primary Type 3 and Type 4 aggressor services contractor, ATAC also offers a multitude of services to the US Department of Defense. Missions that ATAC has supported include subsonic and supersonic air-to-surface missile simulations, offensive and defensive counter-air, large force and self-escort strike opposition, advanced electronic attack, SFAPP (Strike Fighter Advanced Readiness Program), Navy Air Wing and TOPGUN class support, Airborne Air Intercept Controller training, unit-level training, ship gunnery target towing, ballistic and sea-skimming missile simulation, overland airborne threat simulation, fighter syllabus upgrades, fighter air-to-air gunnery practice, advanced airborne electronic threat simulation, research and development support, air-to-ground Combat Controller training and Strike Fighter Tactics Instructor syllabus training.

ATAC has worked with every branch of the US armed services (aside from the Coast Guard) and has participated in an array of exercises and private defense programs, amongst them: ‘Red Flag’, the Boeing Wedgetail program, AN/ALG-55 towed decoy development, F-15 operational readiness evaluations, RIMPAC, ‘Valiant Shield’, ‘Red Flag’ and ‘Northern Edge’. Furthermore, ATAC and its fleet of aircraft have been a part of every carrier air wing work-up over the last seven years. At this time, ATAC is the only commercial aggressor service cleared to provide adversarial support for the F-22 Raptor. In fact, ATAC has flown against every fighter in the US Marine Corps, US Navy and USAF inventories.

Another area where ATAC has seen considerable growth is in providing fast-jet support for Joint Terminal Attack Controller (JTAC) training. Conducted at the Marine Corps Air Ground Combat Center 29 Palms (MCAGCC), and Camp Lejeune, North Carolina and NAS Fallon, this is critical to US commitments in support of the ‘Global War on Terror’. Due
Hunter F35s are the workhorses of the ATAC fleet, combining good performance with the economy of a single engine.

to the great need for more JTACs, combined with the current stresses placed on US Navy and Marine Corps fighter inventories. ATAC has stepped in to provide the aircraft and experience needed to simulate real-life scenarios that the JTACs will encounter in combat, while also becoming the first civilian company to drop inert ordnance in training for the US DoD.

Staffed with 18 pilots, 56 maintainers and around 10 administrative personnel, ATAC has an illustrious roster of former US Navy, Air Force and Marine fighter pilots, with an average of 3,500 fast jet hours each. Over 75 percent of the pilot corps consists of graduates of a formal graduate-level fighter school, such as TOPGUN at Fallon or the USAF Weapons School at Nellis AFB, Nevada. Six ATAC pilots were squadron or wing commanding officers during their individual. If they have recently retired or are currently in the reserves, that is even better, so that they can bring that current front-line knowledge to our fight and help us stay current on the latest tactical training requirements.'

The Kfir

Currently, ATAC owns six Kfir C2s, referred to by their US designation, F-21. It was as such that the earlier Kfir C1 version flew in the aggressor role in the US between 1985 and 1989 while on loan from Israel.

ATAC chose the Kfir C2 to fill the US Navy's Type 4 target requirement, among other missions, for its ability to exceed Mach 1 with ease, while at the same time possessing decent on-station time and stores-carrying capability.

The Kfir is a no-kidding hands-on-all-the-time fighter. There is no autopilot.

You have to fly the jet the entire time, even when you get up to cruise altitude. You can only take your hand off the stick for a moment to grab a map or whatever, and then you have to be right back on the controls to maintain altitude and heading. The jet will cruise most efficiently at Mach 0.85 and tops out above Mach 2.0 when clean. Down on the deck we usually bring it up to about Mach 0.95. Around this transonic realm the jet gets very pitch-sensitive with centerline tanks, but clean it can go (at) 750 KIAS!

There is nowhere more challenging in the Kfir's flight envelope than the approach to land, as 'Nuts' explains: 'Because of the pure delta wing design and the lack of flaps, the Kfir has an extremely high approach speed, physically over 180kt, which is a lot faster than other fast jets. I think the Hornets do about 135kt and the Eagle does around 155kt. So you're up active duty careers, with one being an air wing commander and commanding officer of TOPGUN.

Rob 'Nuts' DeStasio, a retired USAF lieutenant colonel with over 2,600 hours in the F-15 and over 500 hours in the Kfir, is the current Operations Support Manager and Safety and Training Officer for ATAC. He explains what his firm looks for when hiring for its pilot corps: 'All of us are previous military and bring with us that experience. By contract we have to have a minimum of 1,200 fast jet air-to-air radar hours, but most of us have much more, so having flown in some type of fighter that has the ability to target is key.

All of our guys predominantly come from the F-14, F/A-18, F-15 or F-16 background, all platforms with some type of robust air-to-air capability. This is mainly to support our SFARP and NSAWC operations at Fallon, but this also helps when training with the jets flying off the carriers during their pre-deployment cycles. So we are looking for a highly experienced flying the delta-winged Kfir is unlike anything else in the current US inventory, and it takes a skilled hand to pilot such a aircraft.

'Nuts' gives a first-person impression of flying the jet: 'The Kfir feels similar to the T-38 in many ways, only with a much bigger engine, so it will definitely go much faster... On takeoff you light the afterburner and it kicks you every time. Once you rotate the nose, the jet becomes fairly pitch-sensitive, so you have to be right on the money with the flight controls in this arena. As soon as you get airborne, you put the gear up. They are hinged in such a way that they swing forward then in, which changes the center of gravity of the aircraft. So as soon as you're up you are trimming to get that under control, while manhandling the flight controls. So, whereas modern-day fighters have features that automatically trim the jet for gear retraction, the Kfir is a no-kidding, hands-on-the-time fighter.

There is no autopilot... You have to fly the jet the entire time, even when you get up there at 180kt plus and it's very challenging, even for the approach radar pilots, because we are coming in so fast. Even a one-degree change in heading will move us a lot different when compared to, say, a Hornet. Touchdown is relatively easy except that the nose is very high up in the sky and you really have to hold your head up and look over it to see where you are going. On roll-out, you get into a slight aero-brake and release the drag 'chute to slow things down. It gives you a good tug once it deploys, and there is no doubt it is slowing you down. Most of the modern fighters just aero-brake after touchdown and then set the nose down and hit the brakes to stop. In the Kfir we can land without the 'chute, but ample runway length and pilot technique are critical!'

In a turning fight, the jet's big delta wing provides certain challenges, says 'Nuts': 'We are rated up to 7g. When pods are on board, we can go up to 5g. The thing is, the Kfir is solid technology with a 1960s-era design mindset. The delta wing the designers saw as very
This photograph: A Kfir C2 leads a pair of VFA-11 F/A-18E Super Hornets over the W-T2 range near NAS Oceana, Virginia.

Above far right: The US Navy flew the Kfir C1, designated as the F-21, as an aggressor between 1985 and 1999 while the aircraft were on loan from Israel. ATAC chose the Kfir C2 to fill the US Navy's Type 4 target requirement.

Far right: ATAC considers its Kfirs the most maintenance-intensive jets in the fleet. Israeli Aircraft Industries (IAI) works closely with ATAC to maintain the aircraft.

Efficient was made to go straight, and very fast. It was not designed to turn on a dime. After a hard 180-degree turn, that delta wing is going to bleed energy fairly fast. However, JD, who has over 600 hours in the Kfir, adds that 'the Kfir, once slowed below about 250 KIAS, becomes a different machine. If you can keep it between 200 and 250, and if you have the gas to use the afterburner, the Kfir will surprise many pilots in better-turning aircraft with its low-speed turning performance.'

Training to fly this demanding machine is no easy task. Originally, the firm possessed a twin-seat TC2 model for instruction purposes. At the time, a senior Kfir test pilot for IAI came to the US to train the initial ATAC Kfir pilot corps, or they traveled to Israel for instruction. Today, ATAC only operates single-seat Kfirs. Checking out hand-picked pilots to fly the Kfir is done in-house and includes initial formation flights with an instructor pilot on the student's wing. 'Nuts' tells us about his

ATAC — from the cockpit

ATAC employs pilots from an array of fighter backgrounds, including those that are currently in the reserves or the guard. In some cases, these pilots also currently fly with front-line aggressor squadrons. CDR Chad 'Coochie' Mingo is one such pilot, currently flying the F-5N for VFC-13 'Saints' at NAS Fallon, and the Hunter F58 for ATAC. 'Being a Fallon guy gives me access to what the latest recommendations from the school house (TOPGUN) are, and any changes in fleet tactics that happen are usually seen by the guys up in Fallon first,' he told Combat Aircraft. 'Then we can put together a paper or a presentation for the staff at ATAC to make sure the information is disseminated, thus increasing the training value to the US Navy. It's a win-win for all involved.'

Going from flying F-5s to Hunters represents not just a change of platforms and performance, but also in capability. 'Coochie' explains: 'In the Hunter we are almost exclusively rear-quarter infra-red shooters only. Without pipers or a head-up display tape to come back to debrief and show a valid shot, we will only take heart-of-envelope IR type shots 45 degrees or less off of the tail. In the modern days of datalinks and AESA radars, it is amazing that ATAC's Hunter drivers do find themselves in this position from time to time: 'It happens when the Blue Force guys get low on situational awareness either because the electronic attack we are providing is degrading their sensor picture, their systems may be down, or just because they begin to make mistakes. It definitely happens and it's appropriate for us to try and punish those mistakes to the best of our ability.'

Although ATAC flies antiquated airframes by today's standards, it provides a unique teaching tool for fleet pilots. Mingo confirms: 'Whether it's ATAC flying or fleet adversary flying, you have got to kill Blue Force fighters in order to drive important points home. For fleet training, as at Fallon, the fighter pilot has a lot on the line — their 'skipper' may be in their back seat or a department head is their flight lead that day. To come back and say, 'I shot down a Hunter', or even a Kfir — that is certainly not going to make them proud of their performance. At the same time, when an old aircraft like that does score a kill, it really underscores the mistakes that were made. Flying the NSAWC F-16s up at Fallon, you can walk around with a big club and just kind of thump people on the head. Guys flying for the Blue Force can come up with all types of excuses as to why they got killed, such as they were flying against a clean 'Viper' that can do Mach 1.7, and so on. So flying the older airplanes actually gives you the ability to underscore their blind spots and say, listen, you got beat today by an inferior platform in every measure of performance. Hard lessons like this are how we build better fighter pilots, and in the end, that is what it's all about. 'In the current fiscal environment, things don't look that optimistic for the Navy side of adversary support. There is a huge list of requirements of stuff that we need at VFC-13, as well as things that we need fleet-wide, and not everything on this list can get met. So, the real question is, what is going to get cut? In my opinion, commercial air services do things at a cost that is significantly lower. So, as long as the actual missions don't go away — and it is hard to envision an environment where that can happen — then commercial air services will continue to be a cost-effective way of fulfilling training requirements.'
Most recently, ATAC’s fleet of A-4Ns has been put to work training JTACs, the legacy of a stable and accurate bombing platform providing an efficient package for these exercises. ATAC is the first private company cleared to employ Mk76 training munitions, which they use during JTAC training events.

Training pilots to fly the Hunter and Skyhawk is a bit less involved than with the Kfir due to the ease of availability of two-seat models. ATAC pilots receive their type certification in the Hunter via a trainer stationed at ATAC’s headquarters in Virginia, while A-4 instruction is conducted in Houston, Texas, aboard the Collings Foundation’s TA-4J.

When it comes to the air-to-air scenarios, although not known for cracking afterburners and blistering speed, the Hunter and Skyhawk can be formidable opponents. ‘Nuts’ describes the abilities of these older aircraft to succeed in a turning fight: ‘The A-4N, with its huge engine, slats and flaps, and its high-cambered wing — once it gets in a turn, even at 5g, it’s going to sustain that 5g turn the entire time. A Hunter will do the same thing if you get it going fast enough; with its big wing, it will turn extremely well. You can actually drop a notch of flaps up to 420kt and it will really dig in and turn tight. It would probably out-turn a Hornet in this configuration.’

Skylhawks and Hunters

The mainstay of the ATAC fleet is the Hunter F58. With 13 leased aircraft flying daily around the world, it has proven to be a reliable, safe and effective platform. What the Hunter lacks in speed it makes up for in predictable flying qualities, endurance and reliability.

CáPT (Ret) John ‘Market’ Burch, a naval aviator with 10 cruises and 1,200 carrier landings under his belt and the current Senior Vice President and Director of Operations for ATAC, says: ‘The Hawker Hunter is, because of its numbers, the workhorse of the firm. We fly more hours with the Hunters than any aircraft we have in our inventory. It has proven to be an iron horse. It just goes and goes, very, very reliably.’

DeStasio added: ‘The Hunters were chosen because they’ve got very high reliability, and you can stuff them full of a lot of gas; they just fly for hours and hours out there on the range. A lot of people think they can just up and grab an L-29 and do this mission, but they can’t because they can’t carry the pods we carry, don’t have the speed and they simply don’t have the on-range time.’

With the rapid growth of ATAC’s operations, there was a need for more aircraft to satisfy increasing demand and take on new missions. The A-4N Skyhawks currently leased by ATAC not only augment the Hunter’s role providing Type 3 targets for the US Navy, but they also bring some new capabilities to the fight.
‘Flying the older airplanes gives you the ability to underscore pilots’ blind spots and say, listen, you got beat today by an inferior platform in every measure of performance. Hard lessons like this are how we build better fighter pilots’

CDR Chad ‘Coochie’ Mingo

Testing the fleet

ATAK’s primary business is flying against US Navy ships and carrier air wings. The company is constantly executing different mission profiles, including countering large strike packages launched from the Carrier Strike Group, masquerading as a supersonic seaskimming cruise missile, providing targets for AV-8B Harrier IIs embarked on amphibious assault ships or teaching young radar operators how to defeat an electronic jamming attack.

‘Nuts’ paints a clearer picture of what the aircraft of ATAK do when playing the bad guy out over the ocean: ‘Our biggest contract is with the US Navy, and while performing under that contract, we go out and help when these ships are doing pre-deployment spin-ups. When they come home from deployment, they always have a period of down-time. After this period they begin to get spun-up to head back out to sea on deployment, and as part of this process they have a variety of drills and exercises that they need to go through. While the jets go to different places to prepare to deploy, such as Fallon or Key West, eventually we fly against these airplanes at Fallon and out at sea for their final training, but that’s a smaller part of what we do. More often we fly as aggressors against the ships so that they can exercise their command and control and the co-ordinated process of tracking, authenticating, and engaging an inbound enemy aircraft. With modern rules of engagement, they have to constantly drill to define where exactly that line is, especially when a high-speed aircraft is barreling towards them and they need to make the decision of it and when to fire.’

He adds: ‘We provide scenarios to get these ships accustomed to engaging under the proper circumstances and parameters to effectively defeat different threats. Sometimes with the Kfirs, we use the aircraft’s speed to race against the ships, flying over the top of them at speeds as high as Mach 1.5. These are usually the most exciting missions.

‘Another scenario we emulate is the low attack, coming in over the water at the ship while they try and shoot us down. This simulation is pretty interesting, as we take two airplanes and fly them in very close formation. One airplane simulates the attacking aircraft and the other the anti-ship missile. At a certain range, we simulate hitting the pickle button — the attacking airplane peels off while the other will simulate a missile profile, diving down towards the water and racing towards the ship. To the ship, it looks exactly like an aircraft-originated missile attack, which is awesome training for them.’

Fallon flying

ATAK maintains a permanent operating location at NAS Fallon in Nevada, participating in Top Gun evolutions and carrier air wing workups. Nuts gives us an idea of what ATAK and its F-22s bring to the fight over the northern Nevada desert: ‘The air wings will field large strike forces where they are going to have bombers, escort fighters, plus HARM (High-Speed Anti-Radiation Missile) shooters and the E-2 Hawkeye out there over the ranges for a mission. They are going to fight their way into the target area and try to get their bombs onto the target and then fight their way out. On the other side of things, you have the NSAWC guys with their Hornets and Vipers as well as VFC-13 and their F-5s. It’s our job to augment these adversary forces.

‘What we bring to the fight is some pretty impressive jamming pods and an aircraft that can carry them in flight regimes that other aircraft cannot. If you have an F-16 or F/A-18 carrying the electronic attack training pods they may have restrictions to their speed or g available. Put the same pods on our Kfirs and now you have the full capability of the training pods and the ability to travel at all over the speed of sound. This also frees the newer, more capable adversaries to do what they do best, locate the Blue Forces and send missiles down-range, while we provide effective electronic combat training. Further, we are flying a highly dissimilar type of jet than what many of the fleet crews have seen or flown against before, so there is a certain performance wildcard and visual “wow factor” element we bring to the mission as well.’

Maintenance marvels

Although the age of ATAK’s aircraft fleet ranges from 30 to 50 years, mission completion rate is over 97 per cent. Flying a fleet of vintage fighters and attack jets is no easy task. Jamie Ramirez, one of ATAK’s maintenance staff members, explains what it’s like working on the ageing fleet: ‘Maintenance-wise, the jets are just like a classic muscle car. Although not nearly as complex as modern-day fighters, oftentimes we cannot just switch out old parts for new ones; A-4 generators, for example, they don’t
make anymore, so we have to overhaul them time and again.'

Nuts further defines the nature of ATAC's fleet reliability: 'As of now, our contracts don't require us to have a large amount of highly advanced avionics, other than the jamming pods that are provided to us and bolt on and off the jets. In modern-day jet fighters, the main problems with airframe availability seem to stem from the avionics always crashing on you. So, our avionics are simple and supportable. As one example, all aircraft have been modified with multiple Garmin GPSs, which are extremely reliable. Even though ATAC flies older aircraft, they were built at a time when aircraft were commonly over-engineered. The Hunter and A-4 were built with slide rules and were drastically over-engineered. They are incredibly strong and capable jets with minimal systems, and the ones that are in these are built very reliably. This allows ATAC to maintain very high availability rates with these airplanes. They can land and turn these jets around in as little as 30 minutes. It's amazing.'

The Kfirs are the most maintenance-intensive jets in the ATAC fleet, followed by the Skyhawks, then the Hunters. Depending on from whom the jets are leased, heavy maintenance such as overhauls or engine swaps is conducted by different representatives. In the Kfir's case, everything is done either in-house or with IAI, the original equipment manufacturer (OEM). When we want technical knowledge or we want parts, we have a direct line to the OEM. 'Market' elaborates. 'The OEM also supports our engines, major parts, and other critical subsystem items such as electonics systems. Furthermore, we have program oversight from the FAA, Navy, as well as our own in-house oversight. We invite and welcome oversight. We want to do things the correct way and the safest way.'

The future for ATAC

Overall, ATAC saves the DoD over 30 percent on direct flying costs for essential missions that would not only cost more, but also put excessive demand on a fighter fleet that is currently taxed to its limits. JD says: 'ATAC has found a highly relevant, niche market. Take an F/A-18 on an air-to-air training mission. If the opposition is another F/A-18, then you have to analyze what the costs to the government are to provide a second fleet Hornet to play the adversary. The cost of that is not only the cost to operate and maintain the jets, but it's also the cost of valuable airframe usage, deducting hours that come off the service life of an F/A-18. Therefore, the services have found that they can control their budget better and maximize the hours available on their fleet by using contract air support for adversary and opposition support missions.'

With the modernization of air forces around the world, the commercial air services adversary role may become not just relevant in budgetary terms, but absolutely necessary. NAVAIR has projected the costs of operating a fleet of hundreds of F-35s/Lightnings II at well over $30,000 per hour, whereas the AV-8B and 'legacy' F/A-18s currently cost about $18,000 per flight hour. JID continues: 'It's our belief that, based on forecast DoD funding levels, as the US and other nations move into a fifth-generation fighter fleet, fifth-generation fighters will be absolutely cost-prohibitive. Eventually, the military is going to have to figure out a way to augment their fleets with a cheaper option. The USAF has begun to do this with T-38s, but eventually, once the F-35 gets on board in strength and everybody is flying LO (low-observable) platforms, they're going to have to augment further.

'US allies are also beginning to understand that with the cost of modern weapons systems such as the F-35 or the Eurofighter, they can't just run these airframes into the ground. They are already looking for better ways to train their people while using less expensive options. With this in mind, we are poised to further our international market share while at the same time continuing to look creatively for opportunities within the US.'

'Market' also describes an optimistic future for ATAC: 'We see a vast potential for increased business with militaries, not only in the US, but worldwide in this field. We have a very dynamic business development group within the company, and we are constantly looking to expand our horizons. We see almost unlimited potential for future business opportunities worldwide and we are always looking for new missions to support, and new capabilities to bring to market.'

These new capabilities include the possibility of adding radars to a portion of the fleet, mainly the Kfirs. Nuts' told Combat Aircraft: 'The future may hold the acquisition of some type of radar, both to help aircrews train on their end so they have to worry about getting shot by BVR (beyond visual range) missiles, and to help the ships who have to worry about being detected by aerial radars.'

It all comes down to money, and in the world of shrinking defense budgets and increasing commitments around the globe, ATAC's business plan just makes sense. 'Market' sums this up: 'The contracts that we fulfill for customers, like the US Navy, are all-inclusive. It's the aircraft, the pilot, it's everything. When you compare that cost to what it actually costs the Navy or the Air Force to fly our same mission, we are just light years cheaper doing it our way.' Apparently the Department of Navy agrees. Last October 29, ATAC was awarded a $45 million contract extension to continue providing Type 3 and Type 4 aggressor support around the globe. It is clear that in just 15 years, the Airborne Tactical Advantage Company has grown from a two-aircraft niche DoD subcontractor to the leader in commercial adversary and fast jet support services, delivering cost-effective, increasingly relevant and reliable training in an uncertain world.

Acknowledgements: Very special thanks to Rob 'Nuts' DeStasio, as well as Jeffrey JD Parker. Further thanks to John 'Market' Burch, Chad 'Cookie' Mingo, Jamie Ramirez and all of the ATAC staff at Point Magu and abroad.